

SOPHIA Workshop of April 2023

Hanwha Q Cells

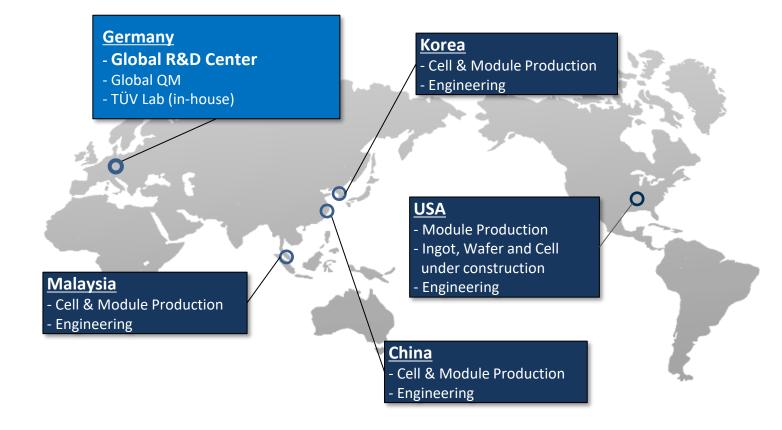
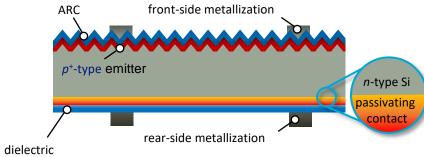

Marcel Kühne, Fabian Fertig, Ronny Bakowskie, Andreas Hubert, Markus Franke, Kristofer Tvingstedt, Christoph Lenz, Thoralf Harder, Jörg Müller

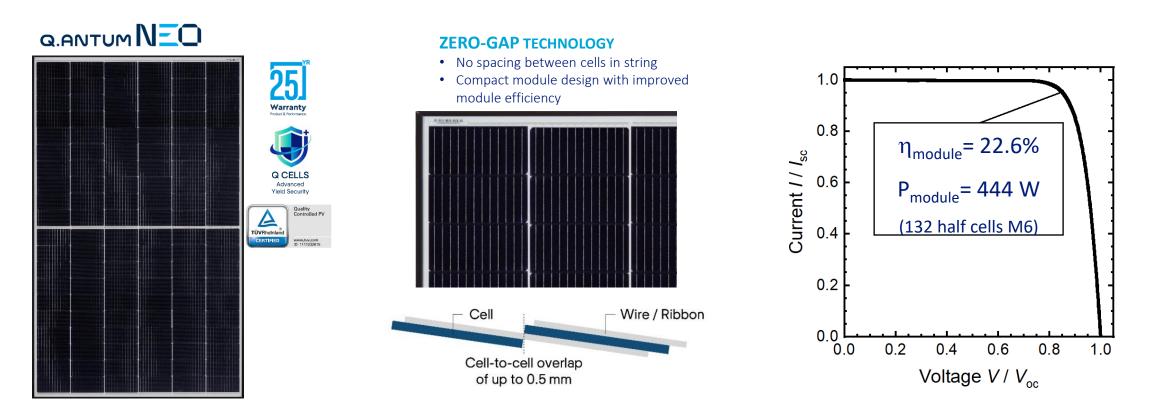
Table of Content

- **1** Introduction of Hanwha Qcells
- 2 Latest progress of Q.ANTUM NEO cell and Q.TRON module technology
- **3** Current module manufacturing process
- 4 Challenging module manufacturing process
- 5 Summary / Out-look


Hanwha Qcells – Global operation for R&D and production

- Qcells current module capacities > 12 GW/a
- Expansion of ingot, wafer, cell and module production in US on-going
- Module capacity in US until 2024: 8.4 GW/a
- Low carbon polysilicon manufacturing in US by REC Polysilicon (Hanwha holds 33.3% share)

Qcells Q.ANTUM NEO technology



Q.ANTUM NEO^[1] technology (TOPCon based)

- n-type Cz silicon substrate
- Passivated rear-side contact
- Lean & cost-effective process (ARC module optimized, 12BB, screen print, mass-production processes ...)
- 2 additional steps vs. Q.ANTUM (PERC based)
- Possible to retrofit existing Q.ANTUM lines
- Same module technology as Q.ANTUM

[1] J.W. Müller (2021). Q Cells' Way to Solar Cell Efficiencies Exceeding 24 % in Mass Production. Silicon PV 2021.

Qcells Q.TRON module technology

Current status module development

- State-of-the art module interconnection technology can be applied (half-cells, multi-wire, standard encapsulants, zerogap)
- 22.6% full-area module efficiency (444 W) achieved (full module size, 132 HC M6 layout)

Current module manufacturing process

Main Module-Process-Flow

Current module manufacturing process

Cell connection

- Fully automatic tabber units
- Temperature peaks up to 220°C
- Process time < 1min / String</p>

Internal wire/ribbon-to-cell stress:

proven and demonstrated reliability
(climate chamber test like TC600+ as well as outdoor)

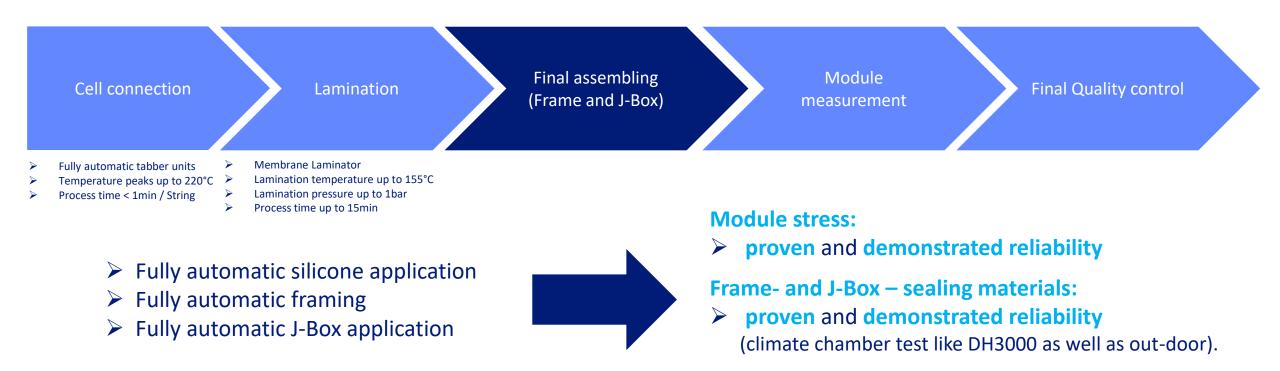

Mechanical stress

Current module manufacturing process

Lamination

- Fully automatic tabber units
- Temperature peaks up to 220°C
- Process time < 1min / String</p>
 - Membrane Laminator
 - Lamination temperature up to 155°C
 - Lamination pressure up to 1bar
 - Process time up to 15min

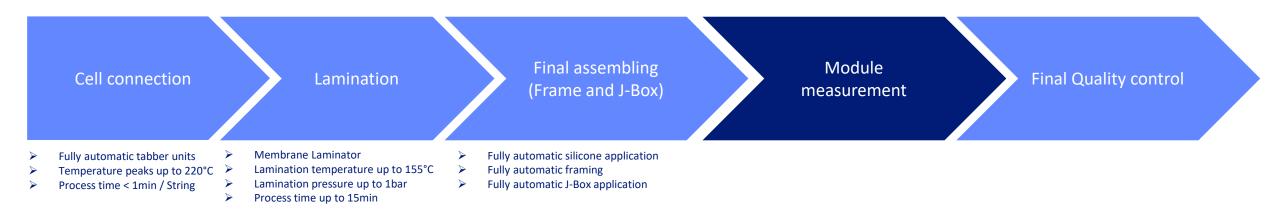
- Internal cell stress:
- proven and demonstrated reliability (climate chamber test as well as outdoor)
 Used materials:
- proven and demonstrated reliability by extended climatic stress protocols beyond IEC



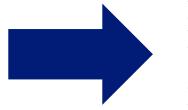
Atmospheric agents

Current module manufacturing process

Final assembling

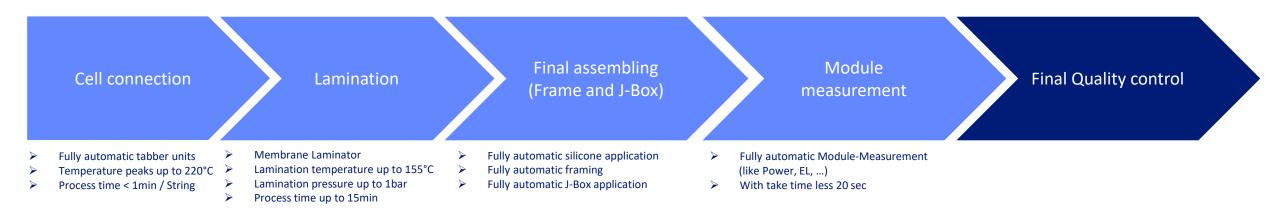


Mechanical stress

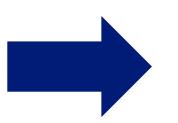

Atmospheric agents

Current module manufacturing process

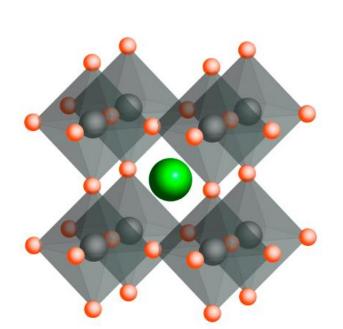
Power measurement


- Fully automatic Module-Measurement (like Power, EL, ...)
- with cycle time less 15 sec

- Global Calibration-standards across production
- External certified Golden Module for first level calibration
- Silver Module for **daily** second level calibration


Current module manufacturing process

Final Quality control


> 100% visually inspection

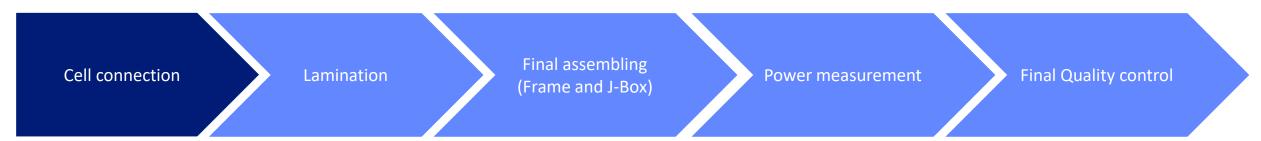
manual module release based on all IPQC information

Excellent integrated Quality system established in the full production chain.

- IQC for all materials
- In-line process control systems
- Final module quality release

Perovskit Tandem Cells/Modules

Mechanical stress


Atmospheric agents

Polar chemicals

Challenging aspects in the development of next-generation modules I Hanwha Q Cells I Final I 20th of April 2023

Cell connection

- > Fully automatic tabber units
- Temperature peaks up to 220°C
- Process time < 1min / String</p>

Question?

- Current soldering process can work?
- New interconnection concepts needed?

Lamination

- Membrane Laminator \geq
- Lamination temperature up to 155°C
- Lamination pressure up to 1bar
- Process time up to 15min

Question?

- Current lamination conditions can works?
- Current used materials provides sufficient protection?
- Negative affect of by-products or degradation products?

Final assembling

- Fully automatic silicone application
- Fully automatic framing
- Fully automatic J-Box application

Question?

- Current Frame- and J-Box sealing concepts and materials can work?
- Currently sealing materials/concepts provide sufficient protection?

Power measurement

- Fully automatic Module-Measurement (like Power, EL, ...)
- ➤ with take time less 15 sec

Question?

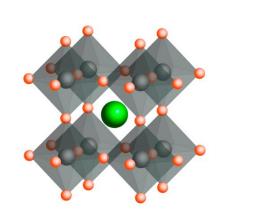
> How we can measure Tandem Modules in a correct way in the

short times needed in mass production?

Final Quality control

- > 100% visually inspection
- manual module release based on all IPQC information

Question?


Established IEC Norm sufficient for Tandem modules?

Summary / Out-look

There are a lot of open questions across the hole module production chain, which have to be solved and understood before starting a Perovskit-Tandem mass production.

Therefor a detailed understanding of the degradation mechanism of Perovskit-Tandem cells during module production is needed.

Behind the module production, if the current IEC Norms capable to ensure Perovskit-Tandem-Module reliability regarding out-door requirements for the given life time.

High temperature

Mechanical stress

Atmospheric agents

THANK YOU

Module R&D | Marcel Kühne

Special thanks to the entire R&D team of Hanwha Q CELLS for their contribution to this work.

63

Parts of this work was funded by the German Federal Ministry for Economic Affairs and Climate Action within the research projects "PeroQ" (contract no. 03EE1118B) and "MoQa" (contract no. 03EE1140A).

Parts of this project are co-funded by the European Union under GA No. 101084251 "PEPPERONI" and GA No. 101075725 "TRIUMPH". Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

The project is also supported by the Swiss State Secretariat for Education, Research and Innovation (SERI).

Co-funded by the European Union

Contact: j.mueller@qcells.com

*	Federal Ministry for Economic Affairs and Energy
on the basis of a decision by the German Bundestag	

Supported by:

We are hiring!

https://www.q-cells.de/karriere.html

